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Improving Time-Domain Measurements with
a Network Analyzer Using a Robust Rational

Interpolation Technique
Wendemagegnehu T. Beyene, Member, IEEE

Abstract—A method to efficiently and accurately compute a
time-domain waveform from a network-analyzer frequency-do-
main measurement is presented in this paper. The method is based
on a robust interpolation technique to construct a pole-residue
representation of the response of the device-under-test. First, the
rational function is expressed in terms of Chebyshev polynomials,
instead of the usual power series, to accurately determine the poles
of the network over a wide frequency range. The properties of a
passive system are then utilized to efficiently calculate the residues.
The resulting pole-residue model is analytically transformed to
obtain the time-domain response in any time window, beyond the
limitations of the discrete Fourier transform (DFT) technique.
Unlike the DFT technique, the method does not require a large
number of equally spaced harmonically related frequency points.
The parametric model can also be used to economically store large
measurement data. The proposed procedure is computationally
inexpensive and less sensitive to numerical instability. To illustrate
the validity of the method, examples of frequency- and time-do-
main measurements of a Beatty structure and simulation data of
a low-pass Butterworth filter are given.

Index Terms—Chebyshev polynomial, Fourier transform,
Laplace transform, network analyzer, pole-residue model, rational
interpolation, scattering parameter.

I. INTRODUCTION

SCATTERING parameters of complex structures and
devices can be measured with high accuracy using one of

the commercially available network analyzers. These measured
frequency-domain data can then be transformed to the time
domain using the inverse discrete Fourier transform (IDFT).
The resulting waveforms can then be used to characterize a
network in the time domain. Therefore, the time-domain wave-
form can benefit from the wide dynamic range, error correction
techniques of the frequency-domain data, better signal-to-noise
ratio, and freedom form time jitter and zero-level drift [1].

For example, the Agilent 8510B network analyzer, with the
built-in time-domain option, translates wide-band frequency-
domain measurement data into a time-domain response through
the use of a chirp-transform [2]. Thus, such network analyzers
can perform traditional time-domain reflectrometry (TDR) and
time-domain transmission (TDT) measurements. These TDR
and TDT measurements provide the time-domain behaviors of
the device-under-test (DUT) in terms of step and impulse re-
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sponses, respectively, that are often useful for such applications
as signal integrity analysis.

Traditionally, the fast Fourier transform (FFT) is used to
transform measurement data between frequency and time
domains. Although the FFT offers faster computational speed,
it limits the resolution of the time-domain response. The
time-domain increment limitation of the FFT can be removed
by using more expensive Fourier transform techniques. For
example, although the chirp-transform takes about four times
longer than the FFT, it provides a compromise between the
FFT and the direct use of the Fourier transform in terms of
efficiency and flexibility [3]. In addition, the transform of data
between the domains require the application of an artificial
band limiting filter in order to avoid ringing, overshoot (Gibbs’
phenomenon), and aliasing in the time domain.

Recently, several new methods have been proposed to im-
prove the resolution and accuracy of the time-domain response
obtained from frequency-domain measurements [4]–[7]. In [4],
a generalized pencil of function technique is introduced to lo-
cate the impulses representing reflections due to discontinuities
that would not have been resolved using the discrete Fourier
transform (DFT). The method is able to extract an impulse re-
sponse of a system out of a limited frequency bandwidth data.
This parametric technique uses singular value decomposition to
determine the dominant poles of the network. In [5], a para-
metric model is constructed from the frequency-domain data
to improve the time-domain resolution of a vector-network an-
alyzer. The data is modeled as a superposition of modulated
complex sinusoids through optimization of a sequence of cost
functions. In [6], a parametric time-domain technique is used
to model the behavior of a microwave network from a set of
frequency samples. The method is based on modeling the fre-
quency-domain data as a rational function in the-domain. In
[7], model-based spectral analysis is also used to improve the
resolution of the frequency-domain data beyond the limitations
of the DFT. This technique is used to obtain high-resolution
spectral details from fewer samples. The values of the coeffi-
cients are determined using covariance and principal component
autoregressive methods. The methods in [4]–[7], however, are
computationally very expensive and the models lack accuracy
to fully represent the time-domain behaviors of the DUT.

In this paper, an efficient and accurate method to compute
the time-domain response from frequency-domain data is pre-
sented. A robust rational interpolation technique is used to gen-
erate a pole-residue representation that can be transformed an-
alytically to the time domain without any distortion. The com-
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plexity of the method involves solutions of two linear systems
of equations and one factorization of a real polynomial. The
method does not involve any derivatives of the response. Unlike
previously proposed methods [4]–[7], it neither requires opti-
mization, nor the solutions of eigenvalue problems, nor the sin-
gular value decomposition of the data matrix.

In Section II, scattering parameter formulation of linear net-
works are reviewed. In Section III, the robust rational interpola-
tion technique is discussed, and the procedure for the time-do-
main measurement is presented in Section IV. Experimental re-
sults and conclusion are given in Sections V and VI, respec-
tively.

II. SCATTERING-PARAMETER FORMULATION

Although impedance, admittance, and hybrid parameters are
commonly used to characterize networks, they are difficult to
measure accurately at high frequencies. They can take extreme
values—tend to minus or plus infinity—or even not exit, i.e.,
they can be singular, at resonance frequencies of the DUT. How-
ever, scattering parameters, in addition to their unique physical
meaning, remain bounded and stable. They are suitable at high
frequencies where traveling-wave concepts predominate over
lumped-element techniques. In addition, a scattering matrix ex-
ists for every linear, passive, and time-invariant network and
are readily available from high-frequency measurements. The
frequency-domain scattering matrix relates incident to the re-
flected waves as

(1)

where is the scattering matrix describing the system and
’s and ’s are the forward and backward traveling-wave

vectors, respectively, in the Laplace domain. The main diag-
onal entries of are reflection coefficients and those along
the off-diagonal are transmission coefficients. The time-domain
formulation is given as

(2)

where is a time-domain scattering matrix describing the
system, ’s and ’s are the forward and backward time-
domain traveling wave vectors, respectively, andis used to
denote convolution.

A scattering parameter of a passive system can be approxi-
mated by a least minimum error using a rational function be-
cause it captures the behavior of networks around its poles. Its
partial fraction expansions can also readily be used to obtain
the time-domain responses as sums of trigonometric and/or ex-
ponential functions. The characteristic function of an arbitrary
passive network can have an infinite number of poles; however,
it can be approximated by a finite-order rational function of de-
gree . By choosing an appropriate reference system, the
accuracy of the approximation can even be improved. The ra-
tional function matrix that interpolates the-port scattering ma-
trix at given points can be written as

(3)

where is normalized to unity. The ’s are the coef-
ficient matrices of the numerator polynomials of the scattering
parameters and’s are the coefficients of the denominator poly-
nomial common to the scattering parameters. For each transfer
parameter , (3) contains free coefficients,
hence, at most, independent parameters.

This rational function can be expressed in partial fraction ex-
pansion of the form

(4)

where the ’s are the common poles and ’s are residues of the
scattering matrix.1 The inverse Laplace transform of (4) yields
the time-domain impulse response written as

(5)

The step response of the system is also given as

(6)

where is a unit step function. Similar expressions are also
available for high-order stimuli. Now that the system response
is expressed as a sum of exponential terms, the response to ar-
bitrary stimulus can be efficiently obtained from (5) or (6) by
taking advantage of recursive convolution [8], [9].

III. ROBUST RATIONAL INTERPOLATION

The coefficients of the rational function in (3) are determined
so that the approximating function evaluated at the same fre-
quency points give close approximation to the function .
By canceling the denominator in (3) and evaluating the equa-
tion at the samples of the scattering parameters
and specified distinct points , , the resulting
equations give a linear homogenous system ofequations in
unknowns

(7)

This equation can be written in a matrix form as (8), shown at
the bottom of the following page.

The approximation problem can be solved more efficiently
and accurately by utilizing the special properties of passive sys-
tems. For instance, constraints necessary to insure a physically
realizable passive network require that the transfer function be
a rational fraction of polynomials in. The coefficients of these
polynomials must be real, and all roots of the denominator poly-
nomial must have negative or zero real parts. Thus, the response
of a passive network can only decay in time from any transient
initial state. In addition, network functions are analytic func-
tions of a complex variable; hence, their real and imaginary parts
are related by Cauchy–Riemann equations and are Hilbert trans-
form of each other [10]. For example, the frequency variations

1The multiplicity of the approximate polesjp � p j > � can be assumed to
be single without any loss of generality.
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of resistance and reactance or conductance and sucepectance of
an electrical network are not arbitrary. They are related through
Hilbert transform, just as in the Kramers–Kröning relations be-
tween real and imaginary parts of permittivity and permeability
[11]. This is because the poles of passive network functions are
constrained to the left half--plane, the zeros of impedance and
admittance functions are too located in this half-plane, and that
this functions are analytic in the left half-plane. This relation as-
sures the causality of the time-domain response [12]. The con-
sequence of this property is that only the real part or imaginary
part of the network function has to be approximated and the net-
work function itself can be found from the resulting approxima-
tion [13], [14].

The real part of the network function in (3) can be specified as
the even part of replacing by . Consequently, the
real part of the original function is fitted with the real rational
polynomial function of the squared variable. Since the poles of
the even function are those of both and , the
poles belonging to lie in the left complex frequency half-
plane. Thus, the denominator coefficients in (3) can be obtained
from the even part of . By matching the real parts of the
original function with (3) at the set of frequencies, system of
equations results are shown in (9) at the bottom of this page.

Note that (9) can be solved for the corresponding numerator
coefficient matrices and denominator coefficients’s and ’s,
respectively. For higher order approximations over a wider fre-
quency range, the system in (9) is highly ill conditioned and

Fig. 1. Shapes of the power series! through! become very similar for
high orders over most of the normalized frequency range.

nearly singular when the frequency range is wide or the order
of the approximation is high. This is because the ordinary power
series have a very large dynamic range,
and they become almost parallel at higher orders. As shown in
Fig. 1, for higher orders, the shapes of the power series become
very similar over most of the normalized frequency range [15].
In [14], several techniques have been suggested to improve the
accuracy of the solution for this ill-conditioned system of equa-
tions.
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Fig. 2. Chebyshev polynomialsT (!) throughT (!) have different shapes
over most of the normalized frequency range.

Another approach to circumvent the ill-conditioned matrix in
(9) is to use orthogonal polynomials instead of ordinary power
series. The Chebyshev polynomial of degreeis denoted
and is given by the explicit formula

(10)

For a Chebyshev polynomial of degree, there is an equivalent
th-order power series

...

(11)

As shown in Fig. 2, the Chebyshev polynomials have quite
different shapes over most of the normalized frequencies
where they will be used [15]. They are orthogonal in the
interval over a weight . In addition,
Chebyshev polynomials have a small dynamic range that
is bounded between 1 and 1 in the interval . This
makes the Chebyshev polynomials particularly well suited for

very high-order interpolation problems. Therefore, Chebyshev
polynomials give better accuracy.

Equation (9) can be rewritten using the Chebyshev polyno-
mials of (12), shown at the bottom of this page. Thus, after
solving for the coefficients ’s and ’s of the Chebyshev poly-
nomials, the equivalent coefficients of the same order power se-
ries can be found. Clenshaw’s recurrence formula can be used
to efficiently calculate the coefficients [16].

After the coefficients are converted to coefficients of the ordi-
nary power series, the zeros of the denominator polynomial are
found using one of the polynomial root-finder techniques [16].
Factoring the denominator and taking only the left half-plane
poles, the partial fraction is constructed. No unstable (positive)
poles are obtained since the polynomial roots are determined in
terms of the squared poles. These stable poles are used to cal-
culate the residues by matching the real and imaginary parts of
the partial fraction expression of the transfer faction in (4) to the
original frequency-domain data at a set of points. Equation (4)
can be rewritten into real and imaginary parts as follows:

(13)

For real and complex conjugate poles, the quantities in the
parenthesis of (13) are real. This leads to the linear system
of equations shown in (14) at the bottom of the following
page. The solution of (14) gives the partial fraction expansion
coefficient matrices ’s.

IV. PROCEDURE FORTIME-DOMAIN MEASUREMENTS

A. Determining the Order of the Pole-Residue Model

Proper order selection is an essential criterion for automatic
generation of a pole-residue representation of a network func-
tion. This order selection is a difficult task. The choice of a rea-
sonable value for the approximation order is important in in-
creasing simulation efficiency. In general, a low order may re-
sult in the loss of some useful features or even in inaccurate ap-
proximation, and on the other hand, an overly large order may
increase oscillation from spurious modes appearing. Since the
shape of the original waveform can be represented by two points
between maxima, the initial guess for the order of the rational
function is set to twice the number of maxima of the real or
magnitude part of the frequency-domain data. First, however,
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a three-point moving average is used to smooth the data, and
then twice the number of extrema is taken as an initial guess to
the order of the rational function. After determining the initial
guess to the order, the poles are determined using (9) or (12).
The residues are then solved using (14), and the order is itera-
tively refined to meet the error criterion. For nonband-limited
data, windowing is first used to reduce the energy leakage at

. A detailed description on the effects of various windows
when used with DFT can be found in [17].

B. Determining the Poles

Although (9) is a notoriously ill-conditioned system of equa-
tions, for many practical problems it can be solved accurately by
simply normalizing the frequency so that the range of approxi-
mation maps to by using a change of variables

(15)

The condition of the problem is improved by using Cheby-
shev polynomials, as in (12). The minimum number of points
for the interpolation is . Since the number of unknowns
is often greater than, (9) and (12) can be transformed into a
square matrix using the method of average [13]. The method
of average is used to obtain a consistent system of equations
by adding consecutive equations in (9) and (12) intogroups.
This averages the random error in the measurement noise, thus
making the interpolation process less sensitive to noise.

The interpolation is made less sensitive to measurement error
and noise by extracting common poles to all scattering parame-
ters of an -port. The pole-residue models of the scattering pa-
rameters share the same poles because the poles are physical
attributes of the system and they are common to all scattering
parameters. Therefore, the poles are extracted only once using
data from all the scattering parameters. Once the poles of the

-matrix are determined, the residues are calculated for each
scattering parameter.

C. Determining the Residues

After the polynomial roots are determined, if purely imag-
inary poles are present, they are rejected as spurious. The re-
maining poles with negative real parts are used with the original
frequency-domain data to determined the residue values using
(14). The renormalized frequencies can be used in (14) since the
matrix is well conditioned. The residues of an -port scat-
tering matrix consists of , where . For
an -port scattering matrix, solving (14) for each residue of the
scattering matrix improves the efficiency and accuracy of
the approximations.

If the measurement is also done at dc, i.e., , it is im-
portant to remove from the right-hand side and the
corresponding row form the left-hand side of (14). The magni-
tude of the error between the original data and the pole-residue
model values is calculated. If the error is below the threshold, the
coefficients are stored or updated and the degree of the model is
decreased and the approximation process is repeated. If the error
is above the threshold and there are no coefficients stored, the
degree is increased and the approximation process is repeated.
If the error is acceptable or there are coefficients stored that give
error below the threshold, the approximation is completed. The
pole-residue pairs can then be used to generate the time-domain
response of the network.

Although the method is applicable to arbitrarily spaced sam-
ples, the accuracy of the approximation can decrease when the
ratio of the largest interval to the smallest interval is very large.

V. EXPERIMENTAL RESULTS

A Beatty standard structure and a low-pass Butterworth
filter are given to demonstrate the accuracy of the proposed
method. The calculated time-domain impulse responses are
compared with the data from measurement and conventional
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Fig. 3. One-port measurement of the Beatty standard structure terminated with
a matched load.

Fig. 4. Magnitude plots ofS of the Beatty standard from 45 MHz to 18 GHz,
the measured raw data, and the 24th-order pole-residue model.

Fig. 5. Phase plots ofS of the Beatty standard from 45 MHz to 18 GHz, the
measured raw data, and the 24th-order pole-residue model.

methods. Note that the following examples have very complex
frequency-domain responses that can be extremely difficult to
model using standard global approximation methods without
resorting to optimization techniques.

Example 1: First, the Beatty standard terminated with 50
(similar to the one in [4]), which is shown in Fig. 3, is consid-
ered. The structure has two impedance step discontinuities that
can give rise to reflections. The Agilent 8510B vector-network
analyzer is used to measure the -parameter from 45 MHz
to 18 GHz using 201 points. The -parameter data is approxi-
mated using 24th-order pole-residue model. The magnitude and
phase responses of the data from measurement and pole-residue
model are given in Figs. 4 and 5, respectively. By applying an

Fig. 6. Magnitude plots ofS of the Beatty standard from 45 MHz to 18 GHz,
the band-limited measured data, and the 20th-order pole-residue model.

Fig. 7. Phase plots ofS of the Beatty standard from 45 MHz to 18 GHz, the
band-limited measured data, and the 20th-order pole-residue model.

Fig. 8. Magnitude plots of the impulse responses of the Beatty standard
using inverse FFT and the 20th-order pole-residue model of the band-limited
measured data.

appropriate window, these pole-residue models can be used to
calculate the time-domain response.

Alternatively, the impulse response can be obtained; first, the
data is band limited with windowing to reduce any energy

leakage. A Kaiser window with window constant is
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Fig. 9. Schematic of a two-port scattering parameter analysis of a Butterworth
filter in the Agilent ADS.

Fig. 10. Magnitude plots ofS of the low-pass Butterworth filter from 0 Hz
to 2 GHz, the original data, and the 12th-order pole-residue model.

used in order to make a direct comparison to Agilent 8510B
time-domain option internal techniques. The band-limited
is then approximated by a 20th-order pole-residue model. The
magnitude and phase responses of the band-limited data from the
measurement and pole-residue model are given in Figs. 6 and 7,
respectively. The pole-residue model of the band-limitedis
then used to generate the impulse response of the Beatty structure
using the analytical Laplace inversion . The comparison of the
impulse responses between Agilent 8510B and the pole-residue
model constructed using the Kaiser-windowed frequency-do-
main data are given in Fig. 8. The pole-residue model shows a
perfect agreement to the impulse response from Agilent 8510B.

Example 2: The proposed method can also be applied to
calculate the time-domain response of a two-port-parameter
simulation data of a 13th-order low-pass Butterworth filter.
The filter has a cutoff and stopband frequencies of 1.0 and
1.2 GHz, respectively. The filter is characterized by 201 equally
spaced frequency-domain data. The scattering parameters are
computed using the-parameter simulation controller available
in the Agilent Advanced Design System (ADS) simulator [18].
The ADS schematic for the scattering parameter analysis of the
Butterworth filter is shown in Fig. 9.

A 12th-order pole-residue models are constructed to repre-
sent the scattering parameters and . Since these pole-
residue models share the same poles, they are extracted using

Fig. 11. Phase plots ofS of the low-pass Butterworth filter from 0 Hz to
2 GHz, the original data, and the 12th-order pole-residue model.

Fig. 12. Magnitude plots of the error of 12th-order pole-residue model ofS

of the low-pass Butterworth filter.

Fig. 13. Magnitude plots ofS of the low-pass Butterworth filter from 0 Hz
to 2 GHz, the original data, and the 12th-order pole-residue model.

(9) and the residues are calculated for each scattering param-
eters using (14). The magnitude and phase of the original and
approximated -parameter are shown in Figs. 10 and 11, re-
spectively. The relative error in the approximation is lower than

110 dB, as shown in Fig. 12.
The magnitude and phase of the original and approximated
-parameter are shown in Figs. 13 and 14, respectively. The
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TABLE I
POLE-RESIDUE PAIRS OFS FOR EXAMPLE 2. THERE IS NOPOLE CORRESPONDING TO THEFINAL VALUE, [k ] , IN THE FIRST ROW

Fig. 14. Phase plots ofS of the low-pass Butterworth filter from 0 Hz to 2
GHz, the original data, and the 12th-order pole-residue model.

Fig. 15. Magnitude plots of the error of 12th-order pole-residue model ofS

of the low-pass Butterworth filter.

relative error in the approximation is lower than170 dB, as
shown Fig. 15.

The original data is self-windowing, therefore, its pole-
residue model is directly used to generate the impulse response
of the filter. The comparison of the impulse responses between
the conventional method and proposed pole-residue model are
given in Fig. 16. The two time-domain impulse responses are
indistinguishable. The pole-residue pairs for of the Butter-
worth filter is given in Table I.

Fig. 16. Plots of the impulse responses of the low-pass Butterworth filter using
inverse FFT and the 12th-order pole-residue model of the original data.

VI. CONCLUSIONS

An efficient and accurate technique for calculating a time-do-
main response from frequency-domain measurement data ob-
tained from a network analyzer has been presented in this paper.
The method generates an accurate pole-residue representation
of the frequency-domain measurement and uses an analytical
inversion formula of Laplace transform to construct the corre-
sponding time-domain waveform. The frequency-domain data
can be arbitrarily spaced and have a relatively small number of
points. The method provides a fast way to view an alias-free
time-domain waveform in any given time window. Thus, for
many applications, the approach can be more efficient and more
accurate than the conventional method that uses an IDFT to esti-
mate the time-domain response from a large number of equally
spaced harmonically related frequency points. The complexity
of the method is the solutions of two linear systems of equations
and the factorization of the roots of a real polynomial.

The method provides the ability for a network analyzer to
extract pole-residue or pole-zero models and to simulate tradi-
tional TDR and TDT by taking advantage of the wide dynamic
range and error correction associated with the frequency-domain
measurement or data. We have used the technique successfully
on data from network analyzer measurement and an RF/analog
simulator. The examples show that the proposed method is very
accurate in both the time and frequency domains. For many
examples, the magnitude and phase waveforms of the data from
measurement and pole-residue model were indistinguishable.
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The generated pole-residue models, even for very complex
frequency-domain data, were of a relatively low order. In addi-
tion, the pole-residue representation can be used to efficiently
store measurement data with a large number of samples. The
pole-residue models can also be used in a simulation or optimiza-
tion program [18] to reduce the computational time by several
order of magnitude while preserving accuracy.
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