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Improving Time-Domain Measurements with
a Network Analyzer Using a Robust Rational
Interpolation Technique

Wendemagegnehu T. Beyendember, IEEE

Abstract—A method to efficiently and accurately compute a sponses, respectively, that are often useful for such applications
time-domain waveform from a network-analyzer frequency-do- as signal integrity analysis.
main measurement is presented in this paper. The method is based Traditionally, the fast Fourier transform (FFT) is used to
on a robust interpolation technique to construct a pole-residue ! .
representation of the response of the device-under-test. First, the tranSfprm measurement data between frequengy and time
rational function is expressed in terms of Chebyshev polynomials, domains. Although the FFT offers faster computational speed,
instead of the usual power series, to accurately determine the polesit limits the resolution of the time-domain response. The
of the network over a wide frequency range. The properties of a time-domain increment limitation of the FFT can be removed
passive system are then utilized to efficiently calculate the residues. by using more expensive Fourier transform techniques. For

The resulting pole-residue model is analytically transformed to ) .
obtain the time-domain response in any time window, beyond the example, although the chirptransform takes about four times

limitations of the discrete Fourier transform (DFT) technique. longer than the FFT, it provides a compromise between the
Unlike the DFT technique, the method does not require a large FFT and the direct use of the Fourier transform in terms of
number of equally spaced harmonically related frequency points. efficiency and flexibility [3]. In addition, the transform of data

The parametric model can also be used to economically store large between the domains require the application of an artificial

measurement data. The proposed procedure is computationally . . - L . )
inexpensive and less sensitive to numerical instability. To illustrate band limiting filter in order to avoid ringing, overshoot (Gibbs

the validity of the method, examples of frequency- and time-do- Phenomenon), and aliasing in the time domain.
main measurements of a Beatty structure and simulation data of ~ Recently, several new methods have been proposed to im-

a low-pass Butterworth filter are given. prove the resolution and accuracy of the time-domain response
Index Terms—Chebyshev polynomial, Fourier transform, oObtained from frequency-domain measurements [4]-[7]. In [4],
Laplace transform, network analyzer, pole-residue model, rational a generalized pencil of function technique is introduced to lo-
interpolation, scattering parameter. cate the impulses representing reflections due to discontinuities
that would not have been resolved using the discrete Fourier
transform (DFT). The method is able to extract an impulse re-
sponse of a system out of a limited frequency bandwidth data.
CATTERING parameters of complex structures angthis parametric technique uses singular value decomposition to
evices can be measured with high accuracy using onegfiermine the dominant poles of the network. In [5], a para-
the commercially available network analyzers. These measufgdtric model is constructed from the frequency-domain data
frequency-domain data can then be transformed to the tiReimprove the time-domain resolution of a vector-network an-
domain using the inverse discrete Fourier transform ('DFTAIyzer_ The data is modeled as a superposition of modulated
The resulting waveforms can then be used to characterizg @nplex sinusoids through optimization of a sequence of cost
network in the time domain. Therefore, the time-domain wav@inctions. In [6], a parametric time-domain technique is used
form can benefit from the wide dynamic range, error correctigg model the behavior of a microwave network from a set of
techniques of the frequency-domain data, better signal-to-nofagquency samples. The method is based on modeling the fre-
ratio, and freedom form time jitter and zero-level drift [1]. quency-domain data as a rational function in ta@omain. In
For example, the Agilent 8510B network analyzer, with thez) ' model-based spectral analysis is also used to improve the
built-in time-domain option, translates wide-band frequencyasolution of the frequency-domain data beyond the limitations
domain measurement data into a time-domain response throgghhe DFT. This technique is used to obtain high-resolution
the use of a chirp-transform [2]. Thus, such network analyzergpectral details from fewer samples. The values of the coeffi-
can perform traditional time-domain reflectrometry (TDR) angients are determined using covariance and principal component
time-domain transmission (TDT) measurements. These TRfGtoregressive methods. The methods in [4]-[7], however, are
and TDT measurements provide the time-domain behaviors@fimputationally very expensive and the models lack accuracy
the device-under-test (DUT) in terms of step and impulse rgs fy|ly represent the time-domain behaviors of the DUT.
In this paper, an efficient and accurate method to compute
Manuscript received November 8, 1999. the time-domain response from frequency-domain data is pre-
The author was with Agilent Technologies, Westlake Village, CA 91362ented. A robust rational interpolation technique is used to gen-
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plexity of the method involves solutions of two linear systemahereb, is normalized to unity. Thel;'s are then x n coef-
of equations and one factorization of a real polynomial. THeient matrices of the numerator polynomials of the scattering
method does not involve any derivatives of the response. Unligarameters anfg’s are the coefficients of the denominator poly-
previously proposed methods [4]-[7], it neither requires optitomial common to the scattering parameters. For each transfer
mization, nor the solutions of eigenvalue problems, nor the siparametetZ;; (s), (3) containg = ¢ + ¥ + 1 free coefficients,
gular value decomposition of the data matrix. hence, at most; independent parameters.

In Section I, scattering parameter formulation of linear net- This rational function can be expressed in partial fraction ex-
works are reviewed. In Section Ill, the robust rational interpolgansion of the form
tion technique is discussed, and the procedure for the time-do-
main measurement is presented in Section IV. Experimental re-
sults and conclusion are given in Sections V and VI, respec-
tively.

s
H(s) =Ko+ _ K 4)

i
15— Di

where thep;’s are the common poles aiid’'s are residues of the
Il. SCATTERING-PARAMETER FORMULATION scattering matrix. The inverse Laplace transform of (4) yields

: : : the time-domain impulse responké&) written as
Although impedance, admittance, and hybrid parameters are

commonly used to characterize networks, they are difficult to v

measure accurately at high frequencies. They can take extreme h(t) = Koé(t) + Z K;ehit, 5)
values—tend to minus or plus infinity—or even not exit, i.e., i=1

they can be singular, at resonance frequencies of the DUT. Hopga step response of the systefe) is also given as

ever, scattering parameters, in addition to their unique physical

meaning, remain bounded and stable. They are suitable at high Y IK K.

frequencies where traveling-wave concepts predominate over  g(t) = Kou(t) + Y _ <—Z it — — u(ﬂ) (6)
lumped-element techniques. In addition, a scattering matrix ex- i=1 NP bi

ists for every linear, passive, and time-invariant network anghere,(+) is a unit step function. Similar expressions are also
are readily available from high-frequency measurements. The,ijaple for high-order stimuli. Now that the system response
frequency-domain scattering matrix relates incident to the & expressed as a sum of exponential terms, the response to ar-
flected waves as bitrary stimulus can be efficiently obtained from (5) or (6) by
B(s) = S(s)A(s) ) taking advantage of recursive convolution [8], [9].
whereS(s) is the scattering matrix describing the system and lll. ROBUSTRATIONAL INTERPOLATION
A(s)’'sandB(s)’s are the forward and backward traveling-wave The coefficients of the rational function in (3) are determined
vectors, respectively, in the Laplace domain. The main diage that the approximating function evaluated at the same fre-
onal entries of5(s) are reflection coefficients and those alongluency points give close approximation to the functié(s).
the off-diagonal are transmission coefficients. The time-domay canceling the denominator in (3) and evaluating the equa-
formulation is given as tion at the samples of the scattering parametgtf = H(s;)
andk specified distinct points;,i = 0, ..., k—1, the resulting
b(t) = s(t) * aft) (2) equations give a linear homogenous systerh efjuations inr
unknowns
where s(¢) is a time-domain scattering matrix describing the
system,a(t)’s andb(t)'s are the forward and backward time- Q:(si) — Py(s5:)S; = 0. )
domain traveling wave vectors, respectively, anis used to

denote convolution. This equation can be written in a matrix form as (8), shown at

A scattering parameter of a passive system can be a réQE bottom of fche fp llowing page. .
gp P y bp The approximation problem can be solved more efficiently

mated by a least minimum error using a rational function be- q telv by utilizing th ial " f .
cause it captures the behavior of networks around its poles.% aclgurg ety yutl |2|n? .etspeC|a propir 1€s 0 pass;:/e sys"
partial fraction expansions can also readily be used to obté?rms' orinstance, constraints hecessary to Insure a physically

the time-domain responses as sums of trigonometric and/or é%ll_zabllefpast_swe r;etV\Ilork re_qluw_e t?ﬁt the tf;?‘r.‘Sffr fl;r:ﬁt'on be
ponential functions. The characteristic function of an arbitral rational fraction ot polynomials i The coetlicients of these

passive network can have an infinite number of poles; howev Rlynomlals must be real, and all roots of the denominator poly-

it can be approximated by a finite-order rational function of dé]-om'al mgst ha}[/e nekgatlve olr Zg:‘ro rea_l p;grts.fThus, thet responfe
gree(e/¥). By choosing an appropriate reference system, tl%a passive network can only decay in ime from any transien

accuracy of the approximation can even be improved. The 'lgl_ual state. In addition, network functions are analytic func-

tional function matrix that interpolates theport scattering ma- tions (I)fflgot;nrél:ex virlagg ; hence, theltr_ real an(;j |mag!|nbar): E)arts
trix at given points can be written as are related by Cauchy—Riemann equations and are Hilbert trans-

form of each other [10]. For example, the frequency variations

2 =
H(s) _ Qé(s) _ Ao+ Ais+Ags™ + -+ Ass ( ) 1The multiplicity of the approximate polgs; — p;| > ¢ can be assumed to
Pg(s) 14+ bs+ b252 4t by s?Y be single without any loss of generality.
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A

of resistance and reactance or conductance and sucepectanc
an electrical network are not arbitrary. They are related throug osr
Hilbert transform, just as in the Kramers—Kroning relations be 4| _

tween real and imaginary parts of permittivity and permeability o s

. . . . 04 =
[11]. This is because the poles of passive network functions a o
constrained to the left hak-plane, the zeros of impedance and , °2f o 2 .

—

admittance functions are too located in this half-plane, and thi g 0 ]
this functions are analytic in the left half-plane. This relation as &
sures the causality of the time-domain response [12]. The co
sequence of this property is that only the real part or imaginar -4
part of the network function has to be approximated and the ne s} 1
work function itself can be found from the resulting approxima-
tion [13], [14].
The real part of the network functionin (3) can be specifieda o o1 o0z os  o0s 05 06 o7 os o8 1
the even part ofd (s) replacing—s? by w?. Consequently, the "
real part of the original function is fitted with the real rationaFig. 1. Shapes of the power serie8 throughw?> become very similar for
polynomial function of the squared variable. Since the poles ggh orders over most of the normalized frequency range.
the even functiorH (s) are those of botl# (s) andH(—s), the
poles belonging tdH (s) lie in the left complex frequency half- nearly singular when the frequency range is wide or the order
plane. Thus, the denominator coefficients in (3) can be obtainefthe approximation is high. This is because the ordinary power
from the even part of{(s). By matching the real parts of theseries{w?, w!, w?, w3, ...} have a very large dynamic range,
original function with (3) at the set of frequencies, system @nd they become almost parallel at higher orders. As shown in
equations results are shown in (9) at the bottom of this page Fig. 1, for higher orders, the shapes of the power series become
Note that (9) can be solved for the corresponding numeratary similar over most of the normalized frequency range [15].
coefficient matrices and denominator coefficierts andd’'s, In [14], several techniques have been suggested to improve the
respectively. For higher order approximations over a wider fraccuracy of the solution for this ill-conditioned system of equa-
guency range, the system in (9) is highly ill conditioned aniibns.
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very high-order interpolation problems. Therefore, Chebyshev
polynomials give better accuracy.

Equation (9) can be rewritten using the Chebyshev polyno-
mials of (12), shown at the bottom of this page. Thus, after
solving for the coefficientsi’s andi’s of the Chebyshev poly-
nomials, the equivalent coefficients of the same order power se-
ries can be found. Clenshaw’s recurrence formula can be used
to efficiently calculate the coefficients [16].

After the coefficients are converted to coefficients of the ordi-
nary power series, the zeros of the denominator polynomial are
found using one of the polynomial root-finder techniques [16].
Factoring the denominator and taking only the left half-plane
poles, the partial fraction is constructed. No unstable (positive)
poles are obtained since the polynomial roots are determined in
terms of the squared poles. These stable poles are used to cal-
Fig. 2. Chebyshev polynomialk, () throughTs (w) have different shapes Culate the residues by matching the real and imaginary parts of
over most of the normalized frequency range. the partial fraction expression of the transfer faction in (4) to the
original frequency-domain data at a set of points. Equation (4)
gan be rewritten into real and imaginary parts as follows:

Chebyshev polynomials

Another approach to circumvent the ill-conditioned matrix i
(9) is to use orthogonal polynomials instead of ordinary power 9 9
series. The Chebyshev polynomial of degkée denoted’}, () S(w) = <K0 _ Z éﬁpg) iy <Z %)  (13)
and is given by the explicit formula — wtp; — wtp;

For real and complex conjugate poles, the quantities in the
parenthesis of (13) are real. This leads to the linear system
For a Chebyshev polynomial of degregthere is an equivalent of equations shown in (14) at the bottom of the following
kth-order power series page. The solution of (14) gives the partial fraction expansion
coefficient matriceds;’s.

Ti,(z) = cos(n arccos z). (10)

To(.’L') =1

Ti(z) =x IV. PROCEDURE FORTIME-DOMAIN MEASUREMENTS

To(z) =222 — 1 A. Determining the Order of the Pole-Residue Model

T3(z) =42° — 3z Proper order selection is an essential criterion for automatic

. generation of a pole-residue representation of a network func-
' tion. This order selection is a difficult task. The choice of a rea-
Tit1(x) =22Ty(z) — Ti—1(x), n>1.  (11) sonable value for the approximation order is important in in-
creasing simulation efficiency. In general, a low order may re-
As shown in Fig. 2, the Chebyshev polynomials have quitilt in the loss of some useful features or even in inaccurate ap-
different shapes over most of the normalized frequencipsoximation, and on the other hand, an overly large order may
where they will be used [15]. They are orthogonal in thicrease oscillation from spurious modes appearing. Since the
interval [-1, 1] over a weight(1 — 2?)~%/2. In addition, shape of the original waveform can be represented by two points
Chebyshev polynomials have a small dynamic range thaétween maxima, the initial guess for the order of the rational
is bounded betweer-1 and 1 in the interva[—1, 1]. This function is set to twice the number of maxima of the real or
makes the Chebyshev polynomials particularly well suited fonagnitude part of the frequency-domain data. First, however,

e
2 , i . A I Re(S(wo)) T
T T _T2Re(S(wp)) o —TERe(S(wo)) Re(S(w1))
2L 2 ~T2Re(S(w o —T’Re(S(w : 1
s, T T?Re(S(w1)) T Re(S (w1)) il = | Re(S) (12)
1 T, - T3, —T7  Re(S(wi-1)) -+ T3 Re(S(wi-1)) Re(S(wr-1))
[ by |
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a three-point moving average is used to smooth the data, ahdhatrix are determined, the residues are calculated for each
then twice the number of extrema is taken as an initial guesssicattering parameter.

the order of the rational function. After determining the initial

guess to the order, the poles are determined using (9) or (12). Determining the Residues

The residues are then solved using (14), and the order is iteraafter the polynomial roots are determined, if purely imag-
tively refined to meet the error criterion. For nonband-limitethary poles are present, they are rejected as spurious. The re-
data, windowing is first used to reduce the energy leakageraaining poles with negative real parts are used with the original
wmax- A detailed description on the effects of various windowequency-domain data to determined the residue values using

when used with DFT can be found in [17]. (14). The renormalized frequencies can be used in (14) since the
matrix is well conditioned. The residués of ann-port scat-
B. Determining the Poles tering matrix consists of;;, wherei, j = 1, 2, ..., n. For

Although (9) is a notoriously ill-conditioned system of equa@"?-POrt scattering matrix, solving (14) for each residue of the
tions, for many practical problems it can be solved accurately B§2tt€ring matrixs;; improves the efficiency and accuracy of

simply normalizing the frequency so that the range of approX/1€ @pproximations.

mation maps té—1, 1] by using a change of variables If the measurement is also done at.dc, L., = 0, it is im-
portant to removém(S(wp)) from the right-hand side and the

corresponding row form the left-hand side of (14). The magni-
w — _(wmax + wmin) s f
o= 2 ) (15) tude of the error between the original data and the pole-residue
}(w — i) model values is calculated. If the error is below the threshold, the
R coefficients are stored or updated and the degree of the model is

2
- . . decreased and the approximation process is repeated. If the error
The condition of the problem is improved by using Cheby above the threshold and there are no coefficients stored, the

shev polynomials, as in (12). The minimum number of poinf§e ree is increased and the approximation process is repeated
for the interpolation isc = n. Since the number of unknowns 9 PP P P '

: . If the error is acceptable or there are coefficients stored that give
's often grea_ter than, (9) and (12) can be transformed into asr or below the threshold, the approximation is completed. The

of average is used to obtain a consistent system of equatig%e'res'due pairs can then be used to generate the time-domain

. . . . . response of the network.
by adding consecutive equations in (9) and (12) imtgroups. : : .
T)rllis avergages the rando?n error in th(e)measEJre)metg)tr no?se, t fithough the method is applicable to arbitrarily spaced sam-

hIuess the accuracy of the approximation can decrease when the
making the interpolation process less sensitive to noise. ; 'o, of the lar esétlinterval trt))pthe smallest interval is very large
The interpolation is made less sensitive to measurement etrr%tll 9 ylarge.

and noise by extracting common poles to all scattering parame-
ters of ann-port. The pole-residue models of the scattering pa-
rameters share the same poles because the poles are physidalBeatty standard structure and a low-pass Butterworth
attributes of the system and they are common to all scatterifiiter are given to demonstrate the accuracy of the proposed
parameters. Therefore, the poles are extracted only once usimgthod. The calculated time-domain impulse responses are
data from all the scattering parameters. Once the poles of tmmpared with the data from measurement and conventional

V. EXPERIMENTAL RESULTS

[ S A
wi +p? wi + 3
—p Py
e < S — - Re(S :
R F P o(S(wn))
Re(S(w1))
: [ Ko
1 P —Pv K '
wi_y + i wp_y 13 Re(S(wy—
k—lw b1 k—lw by K| _ I((g‘()k )1))) (14)
—wo —wo m(S(w
O T2 T il ; 0
0T P1 0T Py : Im(S(wr)
0 —wi1 —wi1 | Ky |
W2 + p2 22
1P Wi T Dy .
L Iim(S(wp—1))
—Wk—1 —Wk—1
wl%—l +p% wl%_l +p129 i




BEYENE: IMPROVING TIME-DOMAIN MEASUREMENTS WITH NETWORK ANALYZER 505

125¢em 30em 1.25 cm
o—{—— ‘
Z=500Q Zy=250 Zy=500
© Z=500
Su
O

Fig.3. One-port measurement of the Beatty standard structure terminated wi
a matched load.
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Fig.6. Magnitude plots of;; of the Beatty standard from 45 MHz to 18 GHz,
the band-limited measured data, and the 20th-order pole-residue model.
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Fig.4. Magnitude plots of;; of the Beatty standard from 45 MHz to 18 GHz,
the measured raw data, and the 24th-order pole-residue model.
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Fig. 7.

Phase plots df,, of the Beatty standard from 45 MHz to 18 GHz, the
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Frequency (GHz)

band-limited measured data, and the 20th-order pole-residue model.
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Magnitude

Fig. 5. Phase plots &f,; of the Beatty standard from 45 MHz to 18 GHz, the =o.15
measured raw data, and the 24th-order pole-residue model.

0.1

methods. Note that the following examples have very comple
frequency-domain responses that can be extremely difficult t
model using standard global approximation methods withot
resorting to optimization techniques.

_E)fample L F'rSt’_ the Beatt_y st_andard te_rmmated _W'thﬁq Fig. 8. Magnitude plots of the impulse responses of the Beatty standard
(similar to the one in [4]), which is shown in Fig. 3, is considusing inverse FFT and the 20th-order pole-residue model of the band-limited
ered. The structure has two impedance step discontinuities tfigasured data.
can give rise to reflections. The Agilent 8510B vector-network
analyzer is used to measure thg -parameter from 45 MHz appropriate window, these pole-residue models can be used to
to 18 GHz using 201 points. TH# ; -parameter data is approxi-calculate the time-domain response.
mated using 24th-order pole-residue model. The magnitude and\lternatively, the impulse response can be obtained; first, the
phase responses of the data from measurement and pole-resffjualata is band limited with windowing to reduce any energy
model are given in Figs. 4 and 5, respectively. By applying deakage. A Kaiser window with window constasat = 6.0 is

0.05

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
time (ns)
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Fig. 9. Schematic of a two-port scattering parameter analysis of a Butterwort ~ © 02 04 06 o8 1 12 14 16 1.8 2
. B . requency (GHz)
filter in the Agilent ADS.
Fig. 11. Phase plots df,; of the low-pass Butterworth filter from 0 Hz to
2 GHz, the original data, and the 12th-order pole-residue model.
- -110 T T T T T T T T
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g
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Fig. 10. Magnitude plots of;; of the low-pass Butterworth filter from 0 Hz Frequency (GHz)
to 2 GHz, the original data, and the 12th-order pole-residue model. Fig. 12. Magnitude plots of the error of 12th-order pole-residue mods)| of

of the low-pass Butterworth filter.

used in order to make a direct comparison to Agilent 85101 ° ' ‘ ~ > '
time-domain option internal techniques. The band-limited

is then approximated by a 20th-order pole-residue model. Tt
magnitude and phase responses of the band-limited datafrom- =
measurement and pole-residue model are given in Figs. 6 anc  _,
respectively. The pole-residue model of the band-limfedis
then usedto generate the impulse response of the Beatty struct
using the analytical Laplace inversion . The comparison of th
impulse responses between Agilent 8510B and the pole-resid =
model constructed using the Kaiser-windowed frequency-dt
main data are given in Fig. 8. The pole-residue model shows
perfectagreementto the impulse response from Agilent 8510E

-10

—-40

lagnitude (dB)

-50

-60

Example 2: The proposed method can also be applied t ™[ | - gignaidata e 1
calculate the time-domain response of a two-gbgarameter e T e
simulation data of a 13th-order low-pass Butterworth filter Frequency (GHz)

The filter has a cutoff and stopband frequencies of 1.0 am@. 13. Magnitude plots of-; of the low-pass Butterworth filter from 0 Hz

1.2 GHz, respectively. The filter is characterized by 201 equalig2 GHz, the original data, and the 12th-order pole-residue model.

spaced frequency-domain data. The scattering parameters are

computed using th8-parameter simulation controller availablg9) and the residues are calculated for each scattering param-

in the Agilent Advanced Design System (ADS) simulator [18kters using (14). The magnitude and phase of the original and

The ADS schematic for the scattering parameter analysis of #ug@oroximateds; ; -parameter are shown in Figs. 10 and 11, re-

Butterworth filter is shown in Fig. 9. spectively. The relative error in the approximation is lower than
A 12th-order pole-residue models are constructed to repre110 dB, as shown in Fig. 12.

sent the scattering parametefs; and.S,;. Since these pole- The magnitude and phase of the original and approximated

residue models share the same poles, they are extracted usthgparameter are shown in Figs. 13 and 14, respectively. The
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POLE-RESIDUE PAIRS OF S21 FOR EXAMPLE 2. THERE IS NO POLE CORRESPONDING TO THEFINAL VALUE, [k11]0, IN THE FIRST Row

No ” Residues

0 1.1306525768432705 x 10~ 10 4 j5.0528024220353709 x 10~ 16

1 4.2720938713147634 x 10° + j9.5595312152511429 x 102 —2.0695508562021252 x 10° £ j1.6597007774625940 x 1019
2 —1.0648421121032103 x 10° F j3.6920227015404783 x 10 —2.4142057223284885 X 10° + j8.8832672222893709 x 10°
3 8.2300639825588604 x 10 + j5.8152545492169683 x 107 —1.6437929724653038 x 10% + j6.5810010541544868 x 10°
4 —9.3854672428885131 x 10% F j1.4373386927933698 x 108 —1.4497009798937341 x 108 + j5.3146478698263442 x 102

5 3.2536463476569777 x 10° + j1.9519748715434471 x 108 —2.0385149840838013 x 10% =+ j3.4390505508621674 x 10°
6 —1.0376740239682891 x 10° F ;2.1718814712946717 x 108 —2.2680343184509462 x 10% & j1.1855694290586274 x 10°
3t ——  Original data || ——  Using chirp-z transform
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Fig. 14. Phase plots f,; of the low-pass Butterworth filter from 0 Hz to 2 Fig. 16. Plots of the impulse responses of the low-pass Butterworth filter using
GHz, the original data, and the 12th-order pole-residue model.
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relative error in the approximation is lower tharl70 dB, as

shown Fig. 15.
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inverse FFT and the 12th-order pole-residue model of the original data.

VI. CONCLUSIONS

An efficient and accurate technique for calculating a time-do-
main response from frequency-domain measurement data ob-
tained from a network analyzer has been presented in this paper.
The method generates an accurate pole-residue representation
of the frequency-domain measurement and uses an analytical
inversion formula of Laplace transform to construct the corre-
sponding time-domain waveform. The frequency-domain data
can be arbitrarily spaced and have a relatively small number of
points. The method provides a fast way to view an alias-free
time-domain waveform in any given time window. Thus, for
many applications, the approach can be more efficient and more
accurate than the conventional method that uses an IDFT to esti-
mate the time-domain response from a large number of equally
spaced harmonically related frequency points. The complexity
of the method is the solutions of two linear systems of equations
and the factorization of the roots of a real polynomial.

The method provides the ability for a network analyzer to
extract pole-residue or pole-zero models and to simulate tradi-
tional TDR and TDT by taking advantage of the wide dynamic

The originalS,; data is self-windowing, therefore, its pole-range and error correction associated with the frequency-domain
residue model is directly used to generate the impulse respongasurement or data. We have used the technique successfully
of the filter. The comparison of the impulse responses betweemn data from network analyzer measurement and an RF/analog
the conventional method and proposed pole-residue model siraulator. The examples show that the proposed method is very
given in Fig. 16. The two time-domain impulse responses aaecurate in both the time and frequency domains. For many

indistinguishable. The pole-residue pairs fy of the Butter-
worth filter is given in Table I.

examples, the magnitude and phase waveforms of the data from
measurement and pole-residue model were indistinguishable.
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The generated pole-residue models, even for very compleo] A. V. Oppenheim and R. W. SchafeBiscrete-Time Signal Pro-

frequency-domain data, were of a relatively low order. In addi- __ cessing Englewood Cliffs, NJ: Prentice-Hall, 1989. ,
. . . . . 11] J. D. JacksonClassical Electrodynami¢c2nd ed. New York: Wiley,
tion, the pole-residue representation can be used to efficiently™ ;475

store measurement data with a large number of samples. Tle] A. Papoulis, The Fourier Integral and Its Applications New York:
pole-residue models can also be used in a simulation or optimiza-  MGraw-Hill, 1962.

. 18 d h . | ti b 13] D. B. Kuznetsov and J. E. Schutt-ainé, “Optimal transient simulation of
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